$l_p$-范数约束下MKL-OC-ELM的装备故障检测
作者:
作者单位:

1. 海军航空大学,山东 烟台 264001;2. 中国人民解放军91576部队,浙江 宁波 315020;$ $;3. 海装西安局驻咸阳地区军事代表室,陕西 咸阳 713100

作者简介:

通讯作者:

E-mail: xinghandeqipan@sina.com.

中图分类号:

TP273

基金项目:


MKL and OC-ELM fault detection based on $l_p$-norm constraint
Author:
Affiliation:

1. Naval Aviation University,Yantai 264001,China;2. Unit 91576 of the PLA Troops,Ningbo 315020,China;3. Military Representative Office of Naval Equipment Department in Xianyang,Xianyang 713100,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对列装时间短的现役装备故障样本匮乏、现有算法故障检测准确率较低的问题,将多核学习(multiple kernel learning,MKL)与一类超限学习机(OC-ELM)相结合,提出$l_p$-范数约束下多核学习一类超限学习机($l_p$-MKOCELM)的检测模型.在$l_p$-范数约束下,定义了将MKL与OC-ELM相结合的数学优化形式,推导出基核组合权重与Lagrange乘子的更新方式;为方便故障检测的实施,基于$l_p$-MKOCELM定义了统计检验量与检测阈值;通过实验验证了不同范数的约束形式的近似等价性.将所提出方法应用于常用的UCI数据集和某型装备的测试数据,实验结果表明,相比于传统的SVDD、PCA、OC-SVM、OC-KELM等方法,所提出方法在平衡漏警、虚警的同时,能够显著提升检测精度.

    Abstract:

    Aiming at the problems of the shortage of fault samples for active new equipment and the low accuracy of existing algorithms for fault detection, the multiple kernel learning(MKL) and the one-class extreme learning machine (OC-ELM) are combined, and the $l_p$-norm constrainted multiple kernel learning one-class ELM($l_p$-MKOCELM) is proposed. Under the $l_p$-norm constraint, a mathematical optimization form combining the MKL and the OC-ELM is defined, and the update method of combination weights of the base kernel and Lagrange multipliers are derived.To facilitate the implementation of fault detection, the test statistic and detection threshold based on the $l_p$-MKOCELM are defined. The approximate equivalence of different norm constraints is confirmed through experiments. The proposed method is applied to the commonly used UCI data set and test data of an equipment. The experimental results show that, compared with the traditional SVDD, PCA, OC-SVM, and OC-KELM, the proposed method can significantly improve the detection accuracy while balancing missing alarm and false alarm.

    参考文献
    相似文献
    引证文献
引用本文

刘星,赵建印,朱敏,等.$l_p$-范数约束下MKL-OC-ELM的装备故障检测[J].控制与决策,2021,36(10):2379-2388

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-08-18
  • 出版日期: 2020-10-20