基于情感神经网络的有源电力滤波器智能终端滑模控制
作者:
作者单位:

河海大学

作者简介:

通讯作者:

中图分类号:

TP273

基金项目:

国家自然科学基金(62003132);常州市科技创新计划项目(CJ20190056,CJ20190067);中央高校基本科研业务费专项基金项目(B200202215, B200201052);江苏省研究生科研与实践创新计划项目(No. SJCX21_0193).


Emotional Neural Networks based Intelligent Terminal Sliding Mode Control for Active Power Filter
Author:
Affiliation:

Hohai university

Fund Project:

National Natural Science Foundation of China(62003132);Changzhou Sci&Tech Program (CJ20190056,CJ20190067);the Fundamental Research Funds for the Central Universities(B200202215, B200201052); Postgraduate Research & Practice Innovation Program of Jiangsu Province(No. SJCX21_0193).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了增强有源电力滤波器的电流跟踪控制性能, 本文提出了一种基于连续径向基情感神经网络的递归终端滑模控制方案. 首先介绍了包括集总不确定的有源电力滤波器数学模型. 然后构造了递归终端滑模面. 该滑模面由快速非奇异终端滑模面和递归积分终端滑模面组成, 不仅可确保跟踪误差在有限时间内收敛到零, 而且可通过为滑模面参数设置适当的初始值, 消除滑模面的到达阶段. 此外, 为了有效克服不确定因素的影响, 本文采用连续径向基情感神经网络逼近系统不确定参数, 并运用Lyapunov 方法对其进行了稳定性和收敛性分析. 所设计的连续径向基情感神经网络, 不仅结构简单, 响应速度快, 而且具备参数在线调节能力. 仿真和实验结果均表明该控制方案具有优异的电流跟踪能力以及抗干扰能力.

    Abstract:

    In order to enhance the current tracking control performance of the active power filter,this paper proposes a intelligent terminal sliding mode control scheme based on a continuous radial basis emotional neural network.Firstly, the mathematical model of active power filter including lumped uncertainty is introduced.Then a recursive terminal sliding surface which is composed by a fast non-singular terminal sliding surface and a recursive terminal integral sliding surface is constructed.It can not only ensure that the tracking error converges to zero in a finite time, but also eliminate the arrival stage of the sliding surface by setting appropriate initial values for the sliding surface parameters.In addition, in order to effectively deal with uncertainty, a continuous radial basis emotional neural network is utilized to approximate the uncertain parameters of the system, and its stability and convergence is also ensured using Lyapunov method.The designed continuous radial basis emotional neural network is not only simple in structure, fast in response, but also has the ability to adjust parameters online. Simulation and experimental results show that the control scheme has excellent current tracking ability and anti-interference ability.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-12-30
  • 最后修改日期:2021-05-27
  • 录用日期:2021-06-03
  • 在线发布日期: 2021-07-01
  • 出版日期: