基于双种群模糊引力搜索算法的舰载机甲板作业调度
作者:
作者单位:

海军航空大学

作者简介:

通讯作者:

中图分类号:

V271.4+92

基金项目:

国家自然科学基金项目(基金号:61671462);泰山学者建设工程专项经费;武器装备预先研究项目


Flight Deck Operations Scheduling Based on Dual Population Fuzzy Gravitational Search Algorithm
Author:
Affiliation:

Naval Aviation University

Fund Project:

National Natural Science Foundation of China(61671462); Special Funds of Taishan Scholar Project; Advanced Research Projects of Weapons and Equipment

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    舰载机甲板作业调度问题是一类具有NP-hard特性的资源受限多项目调度问题.首先,分析了舰载机甲板作业调度问题的工序流程约束和各类资源约束,构建了舰载机甲板作业调度混合整数规划模型.然后,基于基本引力搜索算法,提出了双种群模糊引力搜索算法用于模型求解.算法采用基于作业时序修正的优先数编码,采用双种群交替迭代结构,将基于个体的双向对齐技术扩展到种群层面,基于串行调度生成机制产生调度方案.为了提高算法性能,采用边界修正策略修正越界粒子编码,在引力计算阶段,采用模糊逻辑控制策略进行参数自适应控制.最后,通过案例仿真和算法对比,验证了双种群模糊引力搜索算法的有效性,所提出的算法适合求解大规模的舰载机甲板作业调度问题.

    Abstract:

    Abstract:The flight deck operations scheduling problem is considered as a NP-hard resource-constrained multi-project scheduling problem (RCMPSP). In this paper, firstly, the precedence constraints and resource constraints are analyzed, then the mathematical programming model is established. Then, based on basic gravitational search algorithm, the dual population fuzzy gravitational search algorithm (DPFGSA) is proposed for the problem. In the algorithm, the dual population structure and random-key encoding modified by starting/ending time of operations are adopted, and the serial scheduling generation scheme is used to conduct the mapping from encodings to feasible schedules. In order to improve the performance of the algorithm, the boundary correction strategy is adopted to modify the transboundary agent encoding, and the fuzzy logic control strategy is used to perform parameter adaptive control. Simulation results show that the DPFGSA outperforms some other state-of-the-art algorithms for designed cases. The DPFGSA is suitable for solving large-scale flight deck operations scheduling problem.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-05-06
  • 最后修改日期:2021-06-28
  • 录用日期:2020-08-04
  • 在线发布日期: 2020-09-02
  • 出版日期: